The world witnessed how the COVID-19 pandemic gave modern pharmaceuticals a run for their money. While scientists grappled with the challenge of repurposing existing drugs or synthesizing new ones, what came to the rescue while we waited were the ingredients on our spice racks, hidden away in our kitchens.
1. Elderberry: Nature’s Antiviral Powerhouse
2. Echinacea: Immune System Modulator
3. Turmeric: The Golden Anti-Inflammatory
4. Green Tea: Catechins for an Immune Defense Boost
5. Ginger: Spicing up Immune Function
6. Astragalus: Traditional Immune-Boosting Tonic
Astragalus (Astragalus membranaceus) has been a staple in traditional Chinese medicine for centuries, prized for its ability to strengthen the body's natural defenses. Modern research has just begun to unravel the molecular mechanisms behind astragalus's immune-enhancing properties.7. Reishi Mushroom: Fungal Immunomodulator
Conclusion: Herbs Can Help Boost Your Immune System
The seven herbs analyzed in this article – elderberry, echinacea, turmeric, green tea, ginger, astragalus, and reishi mushroom, have unique immune-boosting attributes.References
- Barak, V., Halperin, T., & Kalickman, I. (2001). The effect of Sambucol, a black elderberry-based, natural product, on the production of human cytokines: I. Inflammatory cytokines. European cytokine network, 12(2), 290–296.
- Zakay-Rones, Z., Varsano, N., Zlotnik, M., Manor, O., Regev, L., Schlesinger, M., & Mumcuoglu, M. (1995). Inhibition of several strains of influenza virus in vitro and reduction of symptoms by an elderberry extract (Sambucus nigra L.) during an outbreak of influenza B Panama. Journal of alternative and complementary medicine (New York, N.Y.), 1(4), 361–369. https://doi.org/10.1089/acm.1995.1.361
- Manayi, A., Vazirian, M., & Saeidnia, S. (2015). Echinacea purpurea: Pharmacology, phytochemistry and analysis methods. Pharmacognosy reviews, 9(17), 63–72. https://doi.org/10.4103/0973-7847.156353
- Benson, J. M., Pokorny, A. J., Rhule, A., Wenner, C. A., Kandhi, V., Cech, N. B., & Shepherd, D. M. (2010). Echinacea purpurea extracts modulate murine dendritic cell fate and function. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 48(5), 1170–1177. https://doi.org/10.1016/j.fct.2010.02.007
- Fonseca, F. N., Papanicolaou, G., Lin, H., Lau, C. B., Kennelly, E. J., Cassileth, B. R., & Cunningham-Rundles, S. (2014). Echinacea purpurea (L.) Moench modulates human T-cell cytokine response. International immunopharmacology, 19(1), 94–102. https://doi.org/10.1016/j.intimp.2013.12.019
- Sharma, M., Schoop, R., & Hudson, J. B. (2009). Echinacea as an antiinflammatory agent: the influence of physiologically relevant parameters. Phytotherapy research : PTR, 23(6), 863–867. https://doi.org/10.1002/ptr.2714
- Meng, Z., Yan, C., Deng, Q., Gao, D. F., & Niu, X. L. (2013). Curcumin inhibits LPS-induced inflammation in rat vascular smooth muscle cells in vitro via ROS-relative TLR4-MAPK/NF-κB pathways. Acta pharmacologica Sinica, 34(7), 901–911. https://doi.org/10.1038/aps.2013.24
- Jagetia, G. C., & Aggarwal, B. B. (2007). "Spicing up" of the immune system by curcumin. Journal of clinical immunology, 27(1), 19–35. https://doi.org/10.1007/s10875-006-9066-7
- Zhao, G. J., Lu, Z. Q., Tang, L. M., Wu, Z. S., Wang, D. W., Zheng, J. Y., & Qiu, Q. M. (2012). Curcumin inhibits suppressive capacity of naturally occurring CD4+CD25+ regulatory T cells in mice in vitro. International immunopharmacology, 14(1), 99–106. https://doi.org/10.1016/j.intimp.2012.06.016
- Cong, Y., Wang, L., Konrad, A., Schoeb, T., & Elson, C. O. (2009). Curcumin induces the tolerogenic dendritic cell that promotes differentiation of intestine-protective regulatory T cells. European journal of immunology, 39(11), 3134–3146. https://doi.org/10.1002/eji.200939052
- Kim, G., Jang, M. S., Son, Y. M., Seo, M. J., Ji, S. Y., Han, S. H., Jung, I. D., Park, Y. M., Jung, H. J., & Yun, C. H. (2013). Curcumin inhibits CD4(+) T cell activation, but augments CD69 expression and TGF-β1-mediated generation of regulatory T cells at late phase. PloS one, 8(4), e62300. https://doi.org/10.1371/journal.pone.0062300
- Shafabakhsh, R., Pourhanifeh, M. H., Mirzaei, H. R., Sahebkar, A., Asemi, Z., & Mirzaei, H. (2019). Targeting regulatory T cells by curcumin: A potential for cancer immunotherapy. Pharmacological research, 147, 104353. https://doi.org/10.1016/j.phrs.2019.104353
- Jakubczyk, K., Drużga, A., Katarzyna, J., & Skonieczna-Żydecka, K. (2020). Antioxidant Potential of Curcumin-A Meta-Analysis of Randomized Clinical Trials. Antioxidants (Basel, Switzerland), 9(11), 1092. https://doi.org/10.3390/antiox9111092
- Musial, C., Kuban-Jankowska, A., & Gorska-Ponikowska, M. (2020). Beneficial Properties of Green Tea Catechins. International journal of molecular sciences, 21(5), 1744. https://doi.org/10.3390/ijms21051744
- Taylor, P. W., Hamilton-Miller, J. M., & Stapleton, P. D. (2005). Antimicrobial properties of green tea catechins. Food science and technology bulletin, 2, 71–81. https://doi.org/10.1616/1476-2137.14184
- Song, J. M., Lee, K. H., & Seong, B. L. (2005). Antiviral effect of catechins in green tea on influenza virus. Antiviral research, 68(2), 66–74. https://doi.org/10.1016/j.antiviral.2005.06.010
- Sun, J., Dong, S., Li, J., & Zhao, H. (2022). A comprehensive review on the effects of green tea and its components on the immune function. Food Science and Human Wellness, 11(5), 1143-1155. https://doi.org/10.1016/j.fshw.2022.04.008
- van Breemen, R. B., Tao, Y., & Li, W. (2011). Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale). Fitoterapia, 82(1), 38–43. https://doi.org/10.1016/j.fitote.2010.09.004
- Pázmándi, K., Szöllősi, A. G., & Fekete, T. (2024). The "root" causes behind the anti-inflammatory actions of ginger compounds in immune cells. Frontiers in immunology, 15, 1400956. https://doi.org/10.3389/fimmu.2024.1400956
- Giriraju, A., & Yunus, G. Y. (2013). Assessment of antimicrobial potential of 10% ginger extract against Streptococcus mutans, Candida albicans, and Enterococcus faecalis: an in vitro study. Indian journal of dental research : official publication of Indian Society for Dental Research, 24(4), 397–400. https://doi.org/10.4103/0970-9290.118356
- Du, X., Chen, X., Zhao, B., Lv, Y., Zhang, H., Liu, H., Chen, Z., Chen, Y., & Zeng, X. (2011). Astragalus polysaccharides enhance the humoral and cellular immune responses of hepatitis B surface antigen vaccination through inhibiting the expression of transforming growth factor β and the frequency of regulatory T cells. FEMS immunology and medical microbiology, 63(2), 228–235. https://doi.org/10.1111/j.1574-695X.2011.00845.x
- Qin, Q., Niu, J., Wang, Z., Xu, W., Qiao, Z., & Gu, Y. (2012). Astragalus embranaceus extract activates immune response in macrophages via heparanase. Molecules (Basel, Switzerland), 17(6), 7232–7240. https://doi.org/10.3390/molecules17067232
- Frøkiær, H., Henningsen, L., Metzdorff, S. B., Weiss, G., Roller, M., Flanagan, J., Fromentin, E., & Ibarra, A. (2012). Astragalus root and elderberry fruit extracts enhance the IFN-β stimulatory effects of Lactobacillus acidophilus in murine-derived dendritic cells. PloS one, 7(10), e47878. https://doi.org/10.1371/journal.pone.0047878
- Xu, Q., Cheng, W., Wei, J., Ou, Y., Xiao, X., & Jia, Y. (2023). Synergist for antitumor therapy: Astragalus polysaccharides acting on immune microenvironment. Discover oncology, 14(1), 179. https://doi.org/10.1007/s12672-023-00798-w
- Zhou, L., Liu, Z., Wang, Z., Yu, S., Long, T., Zhou, X., & Bao, Y. (2017). Astragalus polysaccharides exerts immunomodulatory effects via TLR4-mediated MyD88-dependent signaling pathway in vitro and in vivo. Scientific reports, 7, 44822. https://doi.org/10.1038/srep44822
- Saha, T. K., Mariom, Rahman, T., Moniruzzaman, M., Min, T., & Hossain, Z. (2023). Immuno-physiological effects of dietary reishi mushroom powder as a source of beta-glucan on Rohu, Labeo rohita challenged with Aeromonas veronii. Scientific reports, 13(1), 14652. https://doi.org/10.1038/s41598-023-41557-9
- Yoshida, H., Suzuki, M., Sakaguchi, R., Tani, I., Kotani, H., Shudo, N., & Yoshimura, A. (2012). Preferential induction of Th17 cells in vitro and in vivo by Fucogalactan from Ganoderma lucidum (Reishi). Biochemical and biophysical research communications, 422(1), 174–180. https://doi.org/10.1016/j.bbrc.2012.04.135
- Jin, X., Ruiz Beguerie, J., Sze, D. M., & Chan, G. C. (2016). Ganoderma lucidum (Reishi mushroom) for cancer treatment. The Cochrane database of systematic reviews, 4(4), CD007731. https://doi.org/10.1002/14651858.CD007731.pub3
- Hsu, H. Y., Hua, K. F., Lin, C. C., Lin, C. H., Hsu, J., & Wong, C. H. (2004). Extract of Reishi polysaccharides induces cytokine expression via TLR4-modulated protein kinase signaling pathways. Journal of immunology (Baltimore, Md. : 1950), 173(10), 5989–5999. https://doi.org/10.4049/jimmunol.173.10.5989
- Zampieron, E. R., & Kamhi, E. J. (2012). Natural support for autoimmune and inflammatory disease. Journal of Restorative Medicine, 1(1), 38-47.
- Hilliard, A., Mendonca, P., & Soliman, K. F. A. (2020). Involvement of NFƙB and MAPK signaling pathways in the preventive effects of Ganoderma lucidum on the inflammation of BV-2 microglial cells induced by LPS. Journal of neuroimmunology, 345, 577269. https://doi.org/10.1016/j.jneuroim.2020.577269
Comments (0)
There are no comments for this article. Be the first one to leave a message!